skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Avila, Mario"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the overview of a new experimental apparatus that has been developed to create a single flux rope for studying magnetized plasma jet dynamics, with a focus on the roles of Magnetohydrodynamic instabilities in magnetic reconnection and ion heating. The plasma is generated using coplanar electrodes with a single gas nozzle to create a single flux rope, high-voltage capacitor banks, gas puff valves, and a background magnetic field coil. This setup enables controlled exploration of various plasma stability regimes by adjusting external parameters. A comprehensive suite of diagnostic tools—including a He–Ne interferometer, ion Doppler spectroscopy, and a magnetic field probe array—has been implemented to measure key plasma parameters such as density, temperature, and magnetic field. Initial findings indicate that the apparatus can create a single flux rope and sustain it as a stable jet, a kink-unstable jet, and pinched plasma. In particular, kink instability results in significant ion heating, suggesting that magnetic reconnection may be driven by kink instability. These findings provide valuable insights into plasma dynamics relevant to space physics and magnetized inertial fusion, where fluid instabilities and magnetic reconnection are frequently observed. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. The Costa Rican pygmy rice rat (Oligoryzomys costaricensis) is the primary reservoir of Choclo orthohantavirus (CHOV), the causal agent of hantavirus disease, pulmonary syndrome, and fever in humans in Panama. Since the emergence of CHOV in early 2000, we have systematically sampled and archived rodents from >150 sites across Panama to establish a baseline understanding of the host and virus, producing a permanent archive of holistic specimens that we are now probing in greater detail. We summarize these collections and explore preliminary habitat/virus associations to guide future wildlife surveillance and public health efforts related to CHOV and other zoonotic pathogens. Host sequences of the mitochondrial cytochrome b gene form a single monophyletic clade in Panama, despite wide distribution across Panama. Seropositive samples were concentrated in the central region of western Panama, consistent with the ecology of this agricultural commensal and the higher incidence of CHOV in humans in that region. Hantavirus seroprevalence in the pygmy rice rat was >15% overall, with the highest prevalence in agricultural areas (21%) and the lowest prevalence in shrublands (11%). Host–pathogen distribution, transmission dynamics, genomic evolution, and habitat affinities can be derived from the preserved samples, which include frozen tissues, and now provide a foundation for expanded investigations of orthohantaviruses in Panama. 
    more » « less